Paper 2, Section I, F

Linear Algebra
Part IB, 2019

If UU and WW are finite-dimensional subspaces of a vector space VV, prove that

dim(U+W)=dim(U)+dim(W)dim(UW)\operatorname{dim}(U+W)=\operatorname{dim}(U)+\operatorname{dim}(W)-\operatorname{dim}(U \cap W)

Let

U={xR4x1=7x3+8x4,x2+5x3+6x4=0}W={xR4x1+2x2+3x3=0,x4=0}.\begin{aligned} U &=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid x_{1}=7 x_{3}+8 x_{4}, x_{2}+5 x_{3}+6 x_{4}=0\right\} \\ W &=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid x_{1}+2 x_{2}+3 x_{3}=0, x_{4}=0\right\} . \end{aligned}

Show that U+WU+W is 3 -dimensional and find a linear map :R4R\ell: \mathbb{R}^{4} \rightarrow \mathbb{R} such that

U+W={xR4(x)=0}U+W=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid \ell(\mathbf{x})=0\right\}