What is the adjugate adj (A) of an n×n matrix A ? How is it related to det(A)?
(a) Define matrices B0,B1,…,Bn−1 by
adj(tI−A)=i=0∑n−1Bitn−1−i
and scalars c0,c1,…,cn by
det(tI−A)=j=0∑ncjtn−j
Find a recursion for the matrices Bi in terms of A and the cj 's.
(b) By considering the partial derivatives of the multivariable polynomial
p(t1,t2,…,tn)=det⎝⎜⎜⎜⎜⎛⎝⎜⎜⎜⎜⎛t10⋮00t2⋮0⋯⋯⋱⋯00⋮tn⎠⎟⎟⎟⎟⎞−A⎠⎟⎟⎟⎟⎞
show that
dtd(det(tI−A))=Tr(adj(tI−A))
(c) Hence show that the cj 's may be expressed in terms of Tr(A),Tr(A2),…,Tr(An).