Paper 2, Section I, B

Methods
Part IB, 2019

Let r,θ,ϕr, \theta, \phi be spherical polar coordinates, and let PnP_{n} denote the nnth Legendre polynomial. Write down the most general solution for r>0r>0 of Laplace's equation 2Φ=0\nabla^{2} \Phi=0 that takes the form Φ(r,θ,ϕ)=f(r)Pn(cosθ)\Phi(r, \theta, \phi)=f(r) P_{n}(\cos \theta).

Solve Laplace's equation in the spherical shell 1r21 \leqslant r \leqslant 2 subject to the boundary conditions

Φ=3cos2θ at r=1Φ=0 at r=2\begin{aligned} &\Phi=3 \cos 2 \theta \text { at } r=1 \\ &\Phi=0 \quad \text { at } r=2 \end{aligned}

[The first three Legendre polynomials are

P0(x)=1,P1(x)=x and P2(x)=32x212.]\left.P_{0}(x)=1, \quad P_{1}(x)=x \quad \text { and } \quad P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} .\right]