Paper 3, Section II, E

Analysis II
Part IB, 2019

(a) Carefully state the Picard-Lindelöf theorem on solutions to ordinary differential equations.

(b) Let X=C([1,b],Rn)X=C\left([1, b], \mathbb{R}^{n}\right) be the set of continuous functions from a closed interval [1,b][1, b] to Rn\mathbb{R}^{n}, and let \|\cdot\| be a norm on Rn\mathbb{R}^{n}.

(i) Let fXf \in X. Show that for any c[0,)c \in[0, \infty) the norm

fc=supt[1,b]f(t)tc\|f\|_{c}=\sup _{t \in[1, b]}\left\|f(t) t^{-c}\right\|

is Lipschitz equivalent to the usual sup norm on XX.

(ii) Assume that F:[1,b]×RnRnF:[1, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} is continuous and Lipschitz in the second variable, i.e. there exists M>0M>0 such that

F(t,x)F(t,y)Mxy\|F(t, x)-F(t, y)\| \leqslant M\|x-y\|

for all t[1,b]t \in[1, b] and all x,yRnx, y \in \mathbb{R}^{n}. Define φ:XX\varphi: X \rightarrow X by

φ(f)(t)=1tF(l,f(l))dl\varphi(f)(t)=\int_{1}^{t} F(l, f(l)) d l

for t[1,b]t \in[1, b].

Show that there is a choice of cc such that φ\varphi is a contraction on (X,c)\left(X,\|\cdot\|_{c}\right). Deduce that for any y0Rny_{0} \in \mathbb{R}^{n}, the differential equation

Df(t)=F(t,f(t))D f(t)=F(t, f(t))

has a unique solution on [1,b][1, b] with f(1)=y0f(1)=y_{0}.