Paper 2, Section II, D

Methods
Part IB, 2019

For n=0,1,2,n=0,1,2, \ldots, the degree nn polynomial Cnα(x)C_{n}^{\alpha}(x) satisfies the differential equation

(1x2)y(2α+1)xy+n(n+2α)y=0\left(1-x^{2}\right) y^{\prime \prime}-(2 \alpha+1) x y^{\prime}+n(n+2 \alpha) y=0

where α\alpha is a real, positive parameter. Show that, when mnm \neq n,

abCmα(x)Cnα(x)w(x)dx=0\int_{a}^{b} C_{m}^{\alpha}(x) C_{n}^{\alpha}(x) w(x) d x=0

for a weight function w(x)w(x) and values a<ba<b that you should determine.

Suppose that the roots of Cnα(x)C_{n}^{\alpha}(x) that lie inside the domain (a,b)(a, b) are {x1,x2,,xk}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, with knk \leqslant n. By considering the integral

abCnα(x)i=1k(xxi)w(x)dx\int_{a}^{b} C_{n}^{\alpha}(x) \prod_{i=1}^{k}\left(x-x_{i}\right) w(x) d x

show that in fact all nn roots of Cnα(x)C_{n}^{\alpha}(x) lie in (a,b)(a, b).