Paper 2, Section II, 12E

Analysis II
Part IB, 2019

(a) (i) Define what it means for two norms on a vector space to be Lipschitz equivalent.

(ii) Show that any two norms on a finite-dimensional vector space are Lipschitz equivalent.

(iii) Show that if two norms ,\|\cdot\|,\|\cdot\|^{\prime} on a vector space VV are Lipschitz equivalent then the following holds: for any sequence (vn)\left(v_{n}\right) in V,(vn)V,\left(v_{n}\right) is Cauchy with respect to \|\cdot\| if and only if it is Cauchy with respect to \|\cdot\|^{\prime}.

(b) Let VV be the vector space of real sequences x=(xi)x=\left(x_{i}\right) such that xi<\sum\left|x_{i}\right|<\infty. Let

x=sup{xi:iN},\|x\|_{\infty}=\sup \left\{\left|x_{i}\right|: i \in \mathbb{N}\right\},

and for 1p<1 \leqslant p<\infty, let

xp=(xip)1/p\|x\|_{p}=\left(\sum\left|x_{i}\right|^{p}\right)^{1 / p}

You may assume that \|\cdot\|_{\infty} and p\|\cdot\|_{p} are well-defined norms on VV.

(i) Show that p\|\cdot\|_{p} is not Lipschitz equivalent to \|\cdot\|_{\infty} for any 1p<1 \leqslant p<\infty.

(ii) Are there any p,qp, q with 1p<q<1 \leqslant p<q<\infty such that p\|\cdot\|_{p} and q\|\cdot\|_{q} are Lipschitz equivalent? Justify your answer.