Paper 4, Section I, 4F4 \mathbf{F}

Complex Analysis
Part IB, 2019

State the Cauchy Integral Formula for a disc. If f:D(z0;r)Cf: D\left(z_{0} ; r\right) \rightarrow \mathbb{C} is a holomorphic function such that f(z)f(z0)|f(z)| \leqslant\left|f\left(z_{0}\right)\right| for all zD(z0;r)z \in D\left(z_{0} ; r\right), show using the Cauchy Integral Formula that ff is constant.