Paper 2, Section II, C

Fluid Dynamics
Part IB, 2020

A vertical cylindrical container of radius RR is partly filled with fluid of constant density to depth hh. The free surface is perturbed so that the fluid occupies the region

0<r<R,h<z<ζ(r,θ,t)0<r<R, \quad-h<z<\zeta(r, \theta, t)

where (r,θ,z)(r, \theta, z) are cylindrical coordinates and ζ\zeta is the perturbed height of the free surface. For small perturbations, a linearised description of surface waves in the cylinder yields the following system of equations for ζ\zeta and the velocity potential ϕ\phi :

2ϕ=0,0<r<R,h<z<0ϕt+gζ=0 on z=0ζtϕz=0 on z=0ϕz=0 on z=hϕr=0 on r=R\begin{aligned} \nabla^{2} \phi &=0, \quad 0<r<R, \quad-h<z<0 \\ \frac{\partial \phi}{\partial t}+g \zeta &=0 \quad \text { on } \quad z=0 \\ \frac{\partial \zeta}{\partial t}-\frac{\partial \phi}{\partial z} &=0 \quad \text { on } \quad z=0 \\ \frac{\partial \phi}{\partial z} &=0 \quad \text { on } \quad z=-h \\ \frac{\partial \phi}{\partial r} &=0 \quad \text { on } \quad r=R \end{aligned}

(a) Describe briefly the physical meaning of each equation.

(b) Consider axisymmetric normal modes of the form

ϕ=Re(ϕ^(r,z)eiσt),ζ=Re(ζ^(r)eiσt)\phi=\operatorname{Re}\left(\hat{\phi}(r, z) e^{-i \sigma t}\right), \quad \zeta=\operatorname{Re}\left(\hat{\zeta}(r) e^{-i \sigma t}\right)

Show that the system of equations (1)(5)(1)-(5) admits a solution for ϕ^\hat{\phi} of the form

ϕ^(r,z)=AJ0(knr)Z(z)\hat{\phi}(r, z)=A J_{0}\left(k_{n} r\right) Z(z)

where AA is an arbitrary amplitude, J0(x)J_{0}(x) satisfies the equation

d2J0dx2+1xdJ0dx+J0=0\frac{d^{2} J_{0}}{d x^{2}}+\frac{1}{x} \frac{d J_{0}}{d x}+J_{0}=0

the wavenumber kn,n=1,2,k_{n}, n=1,2, \ldots is such that xn=knRx_{n}=k_{n} R is one of the zeros of the function dJ0/dxd J_{0} / d x, and the function Z(z)Z(z) should be determined explicitly.

(c) Show that the frequency σn\sigma_{n} of the nn-th mode is given by

σn2=ghΨ(knh)\sigma_{n}^{2}=\frac{g}{h} \Psi\left(k_{n} h\right)

where the function Ψ(x)\Psi(x) is to be determined.

[Hint: In cylindrical coordinates (r,θ,z)(r, \theta, z),

2=1rr(rr)+1r22θ2+2z2]\left.\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}} \cdot\right]