Paper 1, Section I, E

Geometry
Part IB, 2020

Define the Gauss map of a smooth embedded surface. Consider the surface of revolution SS with points

((2+cosv)cosu(2+cosv)sinusinv)R3\left(\begin{array}{c} (2+\cos v) \cos u \\ (2+\cos v) \sin u \\ \sin v \end{array}\right) \in \mathbb{R}^{3}

for u,v[0,2π]u, v \in[0,2 \pi]. Let ff be the Gauss map of SS. Describe ff on the {y=0}\{y=0\} cross-section of SS, and use this to write down an explicit formula for ff.

Let UU be the upper hemisphere of the 2 -sphere S2S^{2}, and KK the Gauss curvature of SS. Calculate f1(U)KdA\int_{f^{-1}(U)} K d A.