Paper 2, Section I, B

Methods
Part IB, 2020

Find the Fourier transform of the function

f(x)={A,x10,x>1f(x)= \begin{cases}A, & |x| \leqslant 1 \\ 0, & |x|>1\end{cases}

Determine the convolution of the function f(x)f(x) with itself.

State the convolution theorem for Fourier transforms. Using it, or otherwise, determine the Fourier transform of the function

g(x)={B(2x),x20,x>2g(x)= \begin{cases}B(2-|x|), & |x| \leqslant 2 \\ 0, & |x|>2\end{cases}