Paper 2, Section II, A

Methods
Part IB, 2020

(i) The solution to the equation

ddx(xdFdx)+α2xF=0\frac{d}{d x}\left(x \frac{d F}{d x}\right)+\alpha^{2} x F=0

that is regular at the origin is F(x)=CJ0(αx)F(x)=C J_{0}(\alpha x), where α\alpha is a real, positive parameter, J0J_{0} is a Bessel function, and CC is an arbitrary constant. The Bessel function has infinitely many zeros: J0(γk)=0J_{0}\left(\gamma_{k}\right)=0 with γk>0\gamma_{k}>0, for k=1,2,k=1,2, \ldots. Show that

01J0(αx)J0(βx)xdx=βJ0(α)J0(β)αJ0(β)J0(α)α2β2,αβ\int_{0}^{1} J_{0}(\alpha x) J_{0}(\beta x) x d x=\frac{\beta J_{0}(\alpha) J_{0}^{\prime}(\beta)-\alpha J_{0}(\beta) J_{0}^{\prime}(\alpha)}{\alpha^{2}-\beta^{2}}, \quad \alpha \neq \beta

(where α\alpha and β\beta are real and positive) and deduce that

01J0(γkx)J0(γx)xdx=0,k;01(J0(γkx))2xdx=12(J0(γk))2\int_{0}^{1} J_{0}\left(\gamma_{k} x\right) J_{0}\left(\gamma_{\ell} x\right) x d x=0, \quad k \neq \ell ; \quad \int_{0}^{1}\left(J_{0}\left(\gamma_{k} x\right)\right)^{2} x d x=\frac{1}{2}\left(J_{0}^{\prime}\left(\gamma_{k}\right)\right)^{2}

[Hint: For the second identity, consider α=γk\alpha=\gamma_{k} and β=γk+ϵ\beta=\gamma_{k}+\epsilon with ϵ\epsilon small.]

(ii) The displacement z(r,t)z(r, t) of the membrane of a circular drum of unit radius obeys

1rr(rzr)=2zt2,z(1,t)=0\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial z}{\partial r}\right)=\frac{\partial^{2} z}{\partial t^{2}}, \quad z(1, t)=0

where rr is the radial coordinate on the membrane surface, tt is time (in certain units), and the displacement is assumed to have no angular dependence. At t=0t=0 the drum is struck, so that

z(r,0)=0,zt(r,0)={U,r<b0,r>bz(r, 0)=0, \quad \frac{\partial z}{\partial t}(r, 0)=\left\{\begin{array}{cc} U, & r<b \\ 0, & r>b \end{array}\right.

where UU and b<1b<1 are constants. Show that the subsequent motion is given by

z(r,t)=k=1CkJ0(γkr)sin(γkt) where Ck=2bUJ0(γkb)γk2(J0(γk))2z(r, t)=\sum_{k=1}^{\infty} C_{k} J_{0}\left(\gamma_{k} r\right) \sin \left(\gamma_{k} t\right) \quad \text { where } \quad C_{k}=-2 b U \frac{J_{0}^{\prime}\left(\gamma_{k} b\right)}{\gamma_{k}^{2}\left(J_{0}^{\prime}\left(\gamma_{k}\right)\right)^{2}}