Paper 1, Section I,

Quantum Mechanics
Part IB, 2020

Define what it means for an operator QQ to be hermitian and briefly explain the significance of this definition in quantum mechanics.

Define the uncertainty (ΔQ)ψ(\Delta Q)_{\psi} of QQ in a state ψ\psi. If PP is also a hermitian operator, show by considering the state (Q+iλP)ψ(Q+i \lambda P) \psi, where λ\lambda is a real number, that

Q2ψP2ψ14i[Q,P]ψ2\left\langle Q^{2}\right\rangle_{\psi}\left\langle P^{2}\right\rangle_{\psi} \geqslant \frac{1}{4}\left|\langle i[Q, P]\rangle_{\psi}\right|^{2}

Hence deduce that

(ΔQ)ψ(ΔP)ψ12i[Q,P]ψ(\Delta Q)_{\psi}(\Delta P)_{\psi} \geqslant \frac{1}{2}\left|\langle i[Q, P]\rangle_{\psi}\right|

Give a physical interpretation of this result.