Paper 1, Section I, 6H\mathbf{6 H}

Statistics
Part IB, 2020

Suppose X1,,XnX_{1}, \ldots, X_{n} are independent with distribution N(μ,1)N(\mu, 1). Suppose a prior μN(θ,τ2)\mu \sim N\left(\theta, \tau^{-2}\right) is placed on the unknown parameter μ\mu for some given deterministic θR\theta \in \mathbb{R} and τ>0\tau>0. Derive the posterior mean.

Find an expression for the mean squared error of this posterior mean when θ=0\theta=0.