Paper 1, Section II, G

Complex Analysis or Complex Methods
Part IB, 2020

Let (z)\ell(z) be an analytic branch of logz\log z on a domain DC\{0}D \subset \mathbb{C} \backslash\{0\}. Write down an analytic branch of z1/2z^{1 / 2} on DD. Show that if ψ1(z)\psi_{1}(z) and ψ2(z)\psi_{2}(z) are two analytic branches of z1/2z^{1 / 2} on DD, then either ψ1(z)=ψ2(z)\psi_{1}(z)=\psi_{2}(z) for all zDz \in D or ψ1(z)=ψ2(z)\psi_{1}(z)=-\psi_{2}(z) for all zDz \in D.

Describe the principal value or branch σ1(z)\sigma_{1}(z) of z1/2z^{1 / 2} on D1=C\{xR:x0}D_{1}=\mathbb{C} \backslash\{x \in \mathbb{R}: x \leqslant 0\}. Describe a branch σ2(z)\sigma_{2}(z) of z1/2z^{1 / 2} on D2=C\{xR:x0}D_{2}=\mathbb{C} \backslash\{x \in \mathbb{R}: x \geqslant 0\}.

Construct an analytic branch φ(z)\varphi(z) of 1z2\sqrt{1-z^{2}} on C\{xR:1x1}\mathbb{C} \backslash\{x \in \mathbb{R}:-1 \leqslant x \leqslant 1\} with φ(2i)=5\varphi(2 i)=\sqrt{5}. [If you choose to use σ1\sigma_{1} and σ2\sigma_{2} in your construction, then you may assume without proof that they are analytic.]

Show that for 0<z<10<|z|<1 we have φ(1/z)=iσ1(1z2)/z\varphi(1 / z)=-i \sigma_{1}\left(1-z^{2}\right) / z. Hence find the first three terms of the Laurent series of φ(1/z)\varphi(1 / z) about 0 .

Set f(z)=φ(z)/(1+z2)f(z)=\varphi(z) /\left(1+z^{2}\right) for z>1|z|>1 and g(z)=f(1/z)/z2g(z)=f(1 / z) / z^{2} for 0<z<10<|z|<1. Compute the residue of gg at 0 and use it to compute the integral

z=2f(z)dz\int_{|z|=2} f(z) d z