Paper 2, Section II, B

Complex Analysis or Complex Methods
Part IB, 2020

For the function

f(z)=1z(z2)f(z)=\frac{1}{z(z-2)}

find the Laurent expansions

(i) about z=0z=0 in the annulus 0<z<20<|z|<2,

(ii) about z=0z=0 in the annulus 2<z<2<|z|<\infty,

(iii) about z=1z=1 in the annulus 0<z1<10<|z-1|<1.

What is the nature of the singularity of ff, if any, at z=0,z=z=0, z=\infty and z=1z=1 ?

Using an integral of ff, or otherwise, evaluate

02π2cosθ54cosθdθ\int_{0}^{2 \pi} \frac{2-\cos \theta}{5-4 \cos \theta} d \theta