Paper 3, Section II, 15D

Electromagnetism
Part IB, 2021

(a) The energy density stored in the electric and magnetic fields E\mathbf{E} and B\mathbf{B} is given by

w=ϵ02EE+12μ0BBw=\frac{\epsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B}

Show that, in regions where no electric current flows,

wt+S=0\frac{\partial w}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{S}=0

for some vector field S\mathbf{S} that you should determine.

(b) The coordinates xμ=(ct,x)x^{\prime \mu}=\left(c t^{\prime}, \mathbf{x}^{\prime}\right) in an inertial frame S\mathcal{S}^{\prime} are related to the coordinates xμ=(ct,x)x^{\mu}=(c t, \mathbf{x}) in an inertial frame S\mathcal{S} by a Lorentz transformation xμ=Λνμxνx^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}, where

Λνμ=(γγv/c00γv/cγ0000100001)\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc} \gamma & -\gamma v / c & 0 & 0 \\ -\gamma v / c & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)

with γ=(1v2/c2)1/2\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}. Here vv is the relative velocity of S\mathcal{S}^{\prime} with respect to S\mathcal{S} in the x-direction.

In frame S\mathcal{S}^{\prime}, there is a static electric field E(x)\mathbf{E}^{\prime}\left(\mathbf{x}^{\prime}\right) with E/t=0\partial \mathbf{E}^{\prime} / \partial t^{\prime}=0, and no magnetic field. Calculate the electric field E\mathbf{E} and magnetic field B\mathbf{B} in frame S\mathcal{S}. Show that the energy density in frame S\mathcal{S} is given in terms of the components of E\mathbf{E}^{\prime} by

w=ϵ02[Ex2+(c2+v2c2v2)(Ey2+Ez2)]w=\frac{\epsilon_{0}}{2}\left[E_{x}^{\prime 2}+\left(\frac{c^{2}+v^{2}}{c^{2}-v^{2}}\right)\left(E_{y}^{\prime 2}+E_{z}^{\prime 2}\right)\right]

Use the fact that w/t=0\partial w / \partial t^{\prime}=0 to show that

wt+(wvex)=0\frac{\partial w}{\partial t}+\nabla \cdot\left(w v \mathbf{e}_{x}\right)=0

where ex\mathbf{e}_{x} is the unit vector in the xx-direction.