Paper 3, Section II, A

Fluid Dynamics
Part IB, 2021

A two-dimensional layer of viscous fluid lies between two rigid boundaries at y=±L0y=\pm L_{0}. The boundary at y=L0y=L_{0} oscillates in its own plane with velocity (U0cosωt,0)\left(U_{0} \cos \omega t, 0\right), while the boundary at y=L0y=-L_{0} oscillates in its own plane with velocity (U0cosωt,0)\left(-U_{0} \cos \omega t, 0\right). Assume that there is no pressure gradient and that the fluid flows parallel to the boundary with velocity (u(y,t),0)(u(y, t), 0), where u(y,t)u(y, t) can be written as u(y,t)=Re[U0f(y)exp(iωt)]u(y, t)=\operatorname{Re}\left[U_{0} f(y) \exp (i \omega t)\right].

(a) By exploiting the symmetry of the system or otherwise, show that

f(y)=sinh[(1+i)Δy^]sinh[(1+i)Δ], where y^=yL0 and Δ=(ωL022ν)1/2f(y)=\frac{\sinh [(1+i) \Delta \hat{y}]}{\sinh [(1+i) \Delta]}, \text { where } \hat{y}=\frac{y}{L_{0}} \text { and } \Delta=\left(\frac{\omega L_{0}^{2}}{2 \nu}\right)^{1 / 2}

(b) Hence or otherwise, show that

where Δ±=Δ(1±y^)\Delta_{\pm}=\Delta(1 \pm \hat{y}).

(c) Show that, for Δ1\Delta \ll 1,

u(y,t)U0yL0cosωtu(y, t) \simeq \frac{U_{0} y}{L_{0}} \cos \omega t

and briefly interpret this result physically.

u(y,t)U0=cosωt[coshΔ+cosΔcoshΔcosΔ+](cosh2Δcos2Δ)+sinωt[sinhΔ+sinΔsinhΔsinΔ+](cosh2Δcos2Δ),\begin{aligned} & \frac{u(y, t)}{U_{0}}=\frac{\cos \omega t\left[\cosh \Delta_{+} \cos \Delta_{-}-\cosh \Delta_{-} \cos \Delta_{+}\right]}{(\cosh 2 \Delta-\cos 2 \Delta)} \\ & +\frac{\sin \omega t\left[\sinh \Delta_{+} \sin \Delta_{-}-\sinh \Delta_{-} \sin \Delta_{+}\right]}{(\cosh 2 \Delta-\cos 2 \Delta)}, \end{aligned}