Paper 1, Section I, F

Geometry
Part IB, 2021

Let f:R3Rf: \mathbb{R}^{3} \rightarrow \mathbb{R} be a smooth function and let Σ=f1(0)\Sigma=f^{-1}(0) (assumed not empty). Show that if the differential Dfp0D f_{p} \neq 0 for all pΣp \in \Sigma, then Σ\Sigma is a smooth surface in R3\mathbb{R}^{3}.

Is {(x,y,z)R3:x2+y2=cosh(z2)}\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=\cosh \left(z^{2}\right)\right\} a smooth surface? Is every surface ΣR3\Sigma \subset \mathbb{R}^{3} of the form f1(0)f^{-1}(0) for some smooth f:R3Rf: \mathbb{R}^{3} \rightarrow \mathbb{R} ? Justify your answers.