Paper 3, Section II, E
Let be an embedded smooth surface and a parameterised smooth curve on . What is the energy of ? By applying the Euler-Lagrange equations for stationary curves to the energy function, determine the differential equations for geodesics on explicitly in terms of a parameterisation of .
If contains a straight line , prove from first principles that each segment (with some parameterisation) is a geodesic on .
Let be the hyperboloid defined by the equation and let . By considering appropriate isometries, or otherwise, display explicitly three distinct (as subsets of ) geodesics through in the case when and four distinct geodesics through in the case when . Justify your answer.
Let be a geodesic, with coordinates . Clairaut's relation asserts is constant, where and is the angle between and the plane through the point and the -axis. Deduce from Clairaut's relation that there exist infinitely many geodesics on which stay in the half-space for all .
[You may assume that if satisfies the geodesic equations on then is defined for all and the Euclidean norm is constant. If you use a version of the geodesic equations for a surface of revolution, then that should be proved.]