Paper 2, Section II, F

Analysis and Topology
Part IB, 2021

Let kn:RRk_{n}: \mathbb{R} \rightarrow \mathbb{R} be a sequence of functions satisfying the following properties:

  1. kn(x)0k_{n}(x) \geqslant 0 for all nn and xRx \in \mathbb{R} and there is R>0R>0 such that knk_{n} vanishes outside [R,R][-R, R] for all nn

  2. each knk_{n} is continuous and

kn(t)dt=1\int_{-\infty}^{\infty} k_{n}(t) d t=1

  1. given ε>0\varepsilon>0 and δ>0\delta>0, there exists a positive integer NN such that if nNn \geqslant N, then

δkn(t)dt+δkn(t)dt<ε\int_{-\infty}^{-\delta} k_{n}(t) d t+\int_{\delta}^{\infty} k_{n}(t) d t<\varepsilon

Let f:RRf: \mathbb{R} \rightarrow \mathbb{R} be a bounded continuous function and set

fn(x):=kn(t)f(xt)dtf_{n}(x):=\int_{-\infty}^{\infty} k_{n}(t) f(x-t) d t

Show that fnf_{n} converges uniformly to ff on any compact subset of R\mathbb{R}.

Let g:[0,1]Rg:[0,1] \rightarrow \mathbb{R} be a continuous function with g(0)=g(1)=0g(0)=g(1)=0. Show that there is a sequence of polynomials pnp_{n} such that pnp_{n} converges uniformly to gg on [0,1][0,1]. [[ Hint: consider the functions

kn(t)={(1t2)n/cnt[1,1]0 otherwise k_{n}(t)= \begin{cases}\left(1-t^{2}\right)^{n} / c_{n} & t \in[-1,1] \\ 0 & \text { otherwise }\end{cases}

where cnc_{n} is a suitably chosen constant.]