Paper 1, Section I, 1E1 \mathrm{E}

Linear Algebra
Part IB, 2021

Let VV be a vector space over R,dimV=n\mathbb{R}, \operatorname{dim} V=n, and let ,\langle,,ranglebeanondegenerateantirangle be a non-degenerate anti- symmetric bilinear form on VV.

Let vV,v0v \in V, v \neq 0. Show that vv^{\perp} is of dimension n1n-1 and vvv \in v^{\perp}. Show that if WvW \subseteq v^{\perp} is a subspace with WRv=vW \oplus \mathbb{R} v=v^{\perp}, then the restriction of ,\langle,,rangletoWrangle to W is nondegenerate.

Conclude that the dimension of VV is even.