Paper 4, Section I, 1E1 \mathbf{E}

Linear Algebra
Part IB, 2021

Let Matn(C)\operatorname{Mat}_{n}(\mathbb{C}) be the vector space of nn by nn complex matrices.

Given AMatn(C)A \in \operatorname{Mat}_{n}(\mathbb{C}), define the linear mapA:Matn(C)Matn(C)\operatorname{map}_{A}: \operatorname{Mat}_{n}(\mathbb{C}) \rightarrow \operatorname{Mat}_{n}(\mathbb{C}),

XAXXAX \mapsto A X-X A

(i) Compute a basis of eigenvectors, and their associated eigenvalues, when AA is the diagonal matrix

A=(12n)A=\left(\begin{array}{llll} 1 & & & \\ & 2 & & \\ & & \ddots & \\ & & & n \end{array}\right)

What is the rank of φA\varphi_{A} ?

(ii) Now let A=(0100)A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right). Write down the matrix of the linear transformation φA\varphi_{A} with respect to the standard basis of Mat2(C)\operatorname{Mat}_{2}(\mathbb{C}).

What is its Jordan normal form?