Paper 1, Section II, E

Linear Algebra
Part IB, 2021

Let d1d \geqslant 1, and let Jd=(0100001000010000)Matd(C)J_{d}=\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & \cdots & \cdots & \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \ldots & 0 & 0\end{array}\right) \in \operatorname{Mat}_{d}(\mathbb{C}).

(a) (i) Compute JdnJ_{d}^{n}, for all n0n \geqslant 0.

(ii) Hence, or otherwise, compute (λI+Jd)n\left(\lambda I+J_{d}\right)^{n}, for all n0n \geqslant 0.

(b) Let VV be a finite-dimensional vector space over C\mathbb{C}, and let φEnd(V)\varphi \in \operatorname{End}(V). Suppose φn=0\varphi^{n}=0 for some n>1n>1.

(i) Determine the possible eigenvalues of φ\varphi.

(ii) What are the possible Jordan blocks of φ\varphi ?

(iii) Show that if φ2=0\varphi^{2}=0, there exists a decomposition

V=UW1W2V=U \oplus W_{1} \oplus W_{2}

where φ(U)=φ(W1)=0,φ(W2)=W1\varphi(U)=\varphi\left(W_{1}\right)=0, \varphi\left(W_{2}\right)=W_{1}, and dimW2=dimW1\operatorname{dim} W_{2}=\operatorname{dim} W_{1}.