Let d⩾1, and let Jd=⎝⎜⎜⎜⎜⎜⎛0000100001⋯⋯…⋯⋯⋯000010⎠⎟⎟⎟⎟⎟⎞∈Matd(C).
(a) (i) Compute Jdn, for all n⩾0.
(ii) Hence, or otherwise, compute (λI+Jd)n, for all n⩾0.
(b) Let V be a finite-dimensional vector space over C, and let φ∈End(V). Suppose φn=0 for some n>1.
(i) Determine the possible eigenvalues of φ.
(ii) What are the possible Jordan blocks of φ ?
(iii) Show that if φ2=0, there exists a decomposition
V=U⊕W1⊕W2
where φ(U)=φ(W1)=0,φ(W2)=W1, and dimW2=dimW1.