Paper 2, Section II, E

Linear Algebra
Part IB, 2021

(a) Compute the characteristic polynomial and minimal polynomial of

A=(269379122)A=\left(\begin{array}{ccc} -2 & -6 & -9 \\ 3 & 7 & 9 \\ -1 & -2 & -2 \end{array}\right)

Write down the Jordan normal form for AA.

(b) Let VV be a finite-dimensional vector space over C,f:VV\mathbb{C}, f: V \rightarrow V be a linear map, and for αC,n1\alpha \in \mathbb{C}, n \geqslant 1, write

Wα,n:={vV(fαI)nv=0}W_{\alpha, n}:=\left\{v \in V \mid(f-\alpha I)^{n} v=0\right\}

(i) Given vWα,n,v0v \in W_{\alpha, n}, v \neq 0, construct a non-zero eigenvector for ff in terms of vv.

(ii) Show that if w1,,wdw_{1}, \ldots, w_{d} are non-zero eigenvectors for ff with eigenvalues α1,,αd\alpha_{1}, \ldots, \alpha_{d}, and αiαj\alpha_{i} \neq \alpha_{j} for all iji \neq j, then w1,,wdw_{1}, \ldots, w_{d} are linearly independent.

(iii) Show that if v1Wα1,n,,vdWαd,nv_{1} \in W_{\alpha_{1}, n}, \ldots, v_{d} \in W_{\alpha_{d}, n} are all non-zero, and αiαj\alpha_{i} \neq \alpha_{j} for all iji \neq j, then v1,,vdv_{1}, \ldots, v_{d} are linearly independent.