Paper 3, Section II, 9E

Linear Algebra
Part IB, 2021

(a) (i) State the rank-nullity theorem.

Let UU and WW be vector spaces. Write down the definition of their direct sum UWU \oplus W and the inclusions i:UUW,j:WUWi: U \rightarrow U \oplus W, j: W \rightarrow U \oplus W.

Now let UU and WW be subspaces of a vector space VV. Define l:UWUWl: U \cap W \rightarrow U \oplus W by l(x)=ixjx.l(x)=i x-j x .

Describe the quotient space (UW)/Im(l)(U \oplus W) / \operatorname{Im}(l) as a subspace of VV.

(ii) Let V=R5V=\mathbb{R}^{5}, and let UU be the subspace of VV spanned by the vectors

(12111),(10010),(22212)\left(\begin{array}{c} 1 \\ 2 \\ -1 \\ 1 \\ 1 \end{array}\right),\left(\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}\right),\left(\begin{array}{c} -2 \\ 2 \\ 2 \\ 1 \\ -2 \end{array}\right)

and WW the subspace of VV spanned by the vectors

(32313),(11000),(14121)\left(\begin{array}{c} 3 \\ 2 \\ -3 \\ 1 \\ 3 \end{array}\right),\left(\begin{array}{l} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}\right),\left(\begin{array}{c} 1 \\ -4 \\ -1 \\ -2 \\ 1 \end{array}\right)

Determine the dimension of UWU \cap W.

(b) Let A,BA, B be complex nn by nn matrices with rank(B)=k\operatorname{rank}(B)=k.

Show that det(A+tB)\operatorname{det}(A+t B) is a polynomial in tt of degree at most kk.

Show that if k=nk=n the polynomial is of degree precisely nn.

Give an example where k1k \geqslant 1 but this polynomial is zero.