Paper 2, Section I, C

Methods
Part IB, 2021

Consider the differential operator

Ly=d2ydx2+2dydx\mathcal{L} y=\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}

acting on real functions y(x)y(x) with 0x10 \leqslant x \leqslant 1.

(i) Recast the eigenvalue equation Ly=λy\mathcal{L} y=-\lambda y in Sturm-Liouville form L~y=λwy\tilde{\mathcal{L}} y=-\lambda w y, identifying L~\tilde{\mathcal{L}} and ww.

(ii) If boundary conditions y(0)=y(1)=0y(0)=y(1)=0 are imposed, show that the eigenvalues form an infinite discrete set λ1<λ2<\lambda_{1}<\lambda_{2}<\ldots and find the corresponding eigenfunctions yn(x)y_{n}(x) for n=1,2,n=1,2, \ldots. If f(x)=xx2f(x)=x-x^{2} on 0x10 \leqslant x \leqslant 1 is expanded in terms of your eigenfunctions i.e. f(x)=n=1Anyn(x)f(x)=\sum_{n=1}^{\infty} A_{n} y_{n}(x), give an expression for AnA_{n}. The expression can be given in terms of integrals that you need not evaluate.