Paper 3, Section I, A

Methods
Part IB, 2021

Let f(θ)f(\theta) be a 2π2 \pi-periodic function with Fourier expansion

f(θ)=12a0+n=1(ancosnθ+bnsinnθ)f(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)

Find the Fourier coefficients ana_{n} and bnb_{n} for

f(θ)={1,0<θ<π1,π<θ<2πf(\theta)=\left\{\begin{aligned} 1, & 0<\theta<\pi \\ -1, & \pi<\theta<2 \pi \end{aligned}\right.

Hence, or otherwise, find the Fourier coefficients AnA_{n} and BnB_{n} for the 2π2 \pi-periodic function FF defined by

F(θ)={θ,0<θ<π2πθ,π<θ<2πF(\theta)=\left\{\begin{array}{cc} \theta, & 0<\theta<\pi \\ 2 \pi-\theta, & \pi<\theta<2 \pi \end{array}\right.

Use your answers to evaluate

r=0(1)r2r+1 and r=01(2r+1)2\sum_{r=0}^{\infty} \frac{(-1)^{r}}{2 r+1} \quad \text { and } \quad \sum_{r=0}^{\infty} \frac{1}{(2 r+1)^{2}}