Paper 1, Section II, C

Methods
Part IB, 2021

(a) By introducing the variables ξ=x+ct\xi=x+c t and η=xct\eta=x-c t (where cc is a constant), derive d'Alembert's solution of the initial value problem for the wave equation:

uttc2uxx=0,u(x,0)=ϕ(x),ut(x,0)=ψ(x)u_{t t}-c^{2} u_{x x}=0, \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)

where <x<,t0-\infty<x<\infty, t \geqslant 0 and ϕ\phi and ψ\psi are given functions (and subscripts denote partial derivatives).

(b) Consider the forced wave equation with homogeneous initial conditions:

uttc2uxx=f(x,t),u(x,0)=0,ut(x,0)=0u_{t t}-c^{2} u_{x x}=f(x, t), \quad u(x, 0)=0, \quad u_{t}(x, 0)=0

where <x<,t0-\infty<x<\infty, t \geqslant 0 and ff is a given function. You may assume that the solution is given by

u(x,t)=12c0txc(ts)x+c(ts)f(y,s)dydsu(x, t)=\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s

For the forced wave equation uttc2uxx=f(x,t)u_{t t}-c^{2} u_{x x}=f(x, t), now in the half space x0x \geqslant 0 (and with t0t \geqslant 0 as before), find (in terms of ff ) the solution for u(x,t)u(x, t) that satisfies the (inhomogeneous) initial conditions

u(x,0)=sinx,ut(x,0)=0, for x0u(x, 0)=\sin x, \quad u_{t}(x, 0)=0, \quad \text { for } x \geqslant 0

and the boundary condition u(0,t)=0u(0, t)=0 for t0t \geqslant 0.