Paper 2, Section II, A

Methods
Part IB, 2021

The Fourier transform f~(k)\tilde{f}(k) of a function f(x)f(x) and its inverse are given by

f~(k)=f(x)eikxdx,f(x)=12πf~(k)eikxdk\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x, \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{i k x} d k

(a) Calculate the Fourier transform of the function f(x)f(x) defined by:

f(x)={1 for 0<x<11 for 1<x<00 otherwise f(x)= \begin{cases}1 & \text { for } 0<x<1 \\ -1 & \text { for }-1<x<0 \\ 0 & \text { otherwise }\end{cases}

(b) Show that the inverse Fourier transform of g~(k)=eλk\tilde{g}(k)=e^{-\lambda|k|}, for λ\lambda a positive real constant, is given by

g(x)=λπ(x2+λ2)g(x)=\frac{\lambda}{\pi\left(x^{2}+\lambda^{2}\right)}

(c) Consider the problem in the quarter plane 0x,0y0 \leqslant x, 0 \leqslant y :

2ux2+2uy2=0;u(x,0)={1 for 0<x<1,0 otherwise; u(0,y)=limxu(x,y)=limyu(x,y)=0.\begin{aligned} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} &=0 ; \\ u(x, 0) &= \begin{cases}1 & \text { for } 0<x<1, \\ 0 & \text { otherwise; }\end{cases} \\ u(0, y)=\lim _{x \rightarrow \infty} u(x, y)=\lim _{y \rightarrow \infty} u(x, y) &=0 . \end{aligned}

Use the answers from parts (a) and (b) to show that

u(x,y)=4xyπ01vdv[(xv)2+y2][(x+v)2+y2]u(x, y)=\frac{4 x y}{\pi} \int_{0}^{1} \frac{v d v}{\left[(x-v)^{2}+y^{2}\right]\left[(x+v)^{2}+y^{2}\right]}

(d) Hence solve the problem in the quarter plane 0x,0y0 \leqslant x, 0 \leqslant y :

2wx2+2wy2=0;w(x,0)={1 for 0<x<10 otherwise w(0,y)={1 for 0<y<10 otherwise limxw(x,y)=limyw(x,y)=0\begin{aligned} \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}} &=0 ; \\ w(x, 0) &= \begin{cases}1 & \text { for } 0<x<1 \\ 0 & \text { otherwise }\end{cases} \\ w(0, y) &= \begin{cases}1 & \text { for } 0<y<1 \\ 0 & \text { otherwise }\end{cases} \\ \lim _{x \rightarrow \infty} w(x, y)=\lim _{y \rightarrow \infty} w(x, y) &=0 \end{aligned}

[You may quote without proof any property of Fourier transforms.]