Paper 4, Section II, F

Analysis and Topology
Part IB, 2021

(a) Let g:[0,1]×RnRg:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R} be a continuous function such that for each t[0,1]t \in[0,1], the partial derivatives Dig(t,x)(i=1,,n)D_{i} g(t, x)(i=1, \ldots, n) of xg(t,x)x \mapsto g(t, x) exist and are continuous on [0,1]×Rn[0,1] \times \mathbb{R}^{n}. Define G:RnRG: \mathbb{R}^{n} \rightarrow \mathbb{R} by

G(x)=01g(t,x)dtG(x)=\int_{0}^{1} g(t, x) d t

Show that GG has continuous partial derivatives DiGD_{i} G given by

DiG(x)=01Dig(t,x)dtD_{i} G(x)=\int_{0}^{1} D_{i} g(t, x) d t

for i=1,,ni=1, \ldots, n.

(b) Let f:R2Rf: \mathbb{R}^{2} \rightarrow \mathbb{R} be an infinitely differentiable function, that is, partial derivatives Di1Di2DikfD_{i_{1}} D_{i_{2}} \cdots D_{i_{k}} f exist and are continuous for all kNk \in \mathbb{N} and i1,,ik{1,2}i_{1}, \ldots, i_{k} \in\{1,2\}. Show that for any (x1,x2)R2\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2},

f(x1,x2)=f(x1,0)+x2D2f(x1,0)+x22h(x1,x2)f\left(x_{1}, x_{2}\right)=f\left(x_{1}, 0\right)+x_{2} D_{2} f\left(x_{1}, 0\right)+x_{2}^{2} h\left(x_{1}, x_{2}\right)

where h:R2Rh: \mathbb{R}^{2} \rightarrow \mathbb{R} is an infinitely differentiable function.

[Hint: You may use the fact that if u:RRu: \mathbb{R} \rightarrow \mathbb{R} is infinitely differentiable, then

u(1)=u(0)+u(0)+01(1t)u(t)dt.]\left.u(1)=u(0)+u^{\prime}(0)+\int_{0}^{1}(1-t) u^{\prime \prime}(t) d t .\right]