Paper 4, Section II, C

Methods
Part IB, 2021

The function θ(x,t)\theta(x, t) obeys the diffusion equation

θt=D2θx2\frac{\partial \theta}{\partial t}=D \frac{\partial^{2} \theta}{\partial x^{2}}

Verify that

θ(x,t)=1tex2/4Dt\theta(x, t)=\frac{1}{\sqrt{t}} e^{-x^{2} / 4 D t}

is a solution of ()(*), and by considering θ(x,t)dx\int_{-\infty}^{\infty} \theta(x, t) d x, find the solution having the initial form θ(x,0)=δ(x)\theta(x, 0)=\delta(x) at t=0t=0.

Find, in terms of the error function, the solution of ()(*) having the initial form

θ(x,0)={1,x10,x>1\theta(x, 0)= \begin{cases}1, & |x| \leqslant 1 \\ 0, & |x|>1\end{cases}

Sketch a graph of this solution at various times t0t \geqslant 0.

[The error function is

Erf(x)=2π0xey2dy.]\left.\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y .\right]