Paper 4, Section II, C

Quantum Mechanics
Part IB, 2021

(a) Consider the angular momentum operators L^x,L^y,L^z\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z} and L^2=L^x2+L^y2+L^z2\hat{\mathbf{L}}^{2}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} where

L^z=x^p^yy^p^x,L^x=y^p^zz^p^y and L^y=z^p^xx^p^z.\hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}, \quad \hat{L}_{x}=\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y} \text { and } \hat{L}_{y}=\hat{z} \hat{p}_{x}-\hat{x} \hat{p}_{z} .

Use the standard commutation relations for these operators to show that

L^±=L^x±iL^y obeys [L^z,L^±]=±L^± and [L^2,L^±]=0\hat{L}_{\pm}=\hat{L}_{x} \pm i \hat{L}_{y} \quad \text { obeys } \quad\left[\hat{L}_{z}, \hat{L}_{\pm}\right]=\pm \hbar \hat{L}_{\pm} \quad \text { and } \quad\left[\hat{\mathbf{L}}^{2}, \hat{L}_{\pm}\right]=0

Deduce that if φ\varphi is a joint eigenstate of L^z\hat{L}_{z} and L^2\hat{\mathbf{L}}^{2} with angular momentum quantum numbers mm and \ell respectively, then L^±φ\hat{L}_{\pm} \varphi are also joint eigenstates, provided they are non-zero, with quantum numbers m±1m \pm 1 and \ell.

(b) A harmonic oscillator of mass MM in three dimensions has Hamiltonian

H^=12M(p^x2+p^y2+p^z2)+12Mω2(x^2+y^2+z^2).\hat{H}=\frac{1}{2 M}\left(\hat{p}_{x}^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right)+\frac{1}{2} M \omega^{2}\left(\hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right) .

Find eigenstates of H^\hat{H} in terms of eigenstates ψn\psi_{n} for an oscillator in one dimension with n=0,1,2,n=0,1,2, \ldots and eigenvalues ω(n+12)\hbar \omega\left(n+\frac{1}{2}\right); hence determine the eigenvalues EE of H^\hat{H}.

Verify that the ground state for H^\hat{H} is a joint eigenstate of L^z\hat{L}_{z} and L^2\hat{\mathbf{L}}^{2} with =m=0\ell=m=0. At the first excited energy level, find an eigenstate of L^z\hat{L}_{z} with m=0m=0 and construct from this two eigenstates of L^z\hat{L}_{z} with m=±1m=\pm 1.

Why should you expect to find joint eigenstates of L^z,L^2\hat{L}_{z}, \hat{\mathbf{L}}^{2} and H^\hat{H} ?

[ The first two eigenstates for an oscillator in one dimension are ψ0(x)=\psi_{0}(x)= C0exp(Mωx2/2)C_{0} \exp \left(-M \omega x^{2} / 2 \hbar\right) and ψ1(x)=C1xexp(Mωx2/2)\psi_{1}(x)=C_{1} x \exp \left(-M \omega x^{2} / 2 \hbar\right), where C0C_{0} and C1C_{1} are normalisation constants. ]