Paper 4, Section II, 17H\mathbf{1 7 H}

Statistics
Part IB, 2021

Suppose we wish to estimate the probability θ(0,1)\theta \in(0,1) that a potentially biased coin lands heads up when tossed. After nn independent tosses, we observe XX heads.

(a) Write down the maximum likelihood estimator θ^\hat{\theta} of θ\theta.

(b) Find the mean squared error f(θ)f(\theta) of θ^\hat{\theta} as a function of θ\theta. Compute supθ(0,1)f(θ)\sup _{\theta \in(0,1)} f(\theta).

(c) Suppose a uniform prior is placed on θ\theta. Find the Bayes estimator of θ\theta under squared error loss L(θ,a)=(θa)2L(\theta, a)=(\theta-a)^{2}.

(d) Now find the Bayes estimator θ~\tilde{\theta} under the lossL(θ,a)=θα1(1θ)β1(θa)2\operatorname{loss} L(\theta, a)=\theta^{\alpha-1}(1-\theta)^{\beta-1}(\theta-a)^{2}, where α,β1\alpha, \beta \geqslant 1. Show that

θ~=wθ^+(1w)θ0,\tilde{\theta}=w \hat{\theta}+(1-w) \theta_{0},

where ww and θ0\theta_{0} depend on n,αn, \alpha and β\beta.

(e) Determine the mean squared error gw,θ0(θ)g_{w, \theta_{0}}(\theta) of θ~\tilde{\theta} as defined by ()(*).

(f) For what range of values of ww do we have supθ(0,1)gw,1/2(θ)supθ(0,1)f(θ)\sup _{\theta \in(0,1)} g_{w, 1 / 2}(\theta) \leqslant \sup _{\theta \in(0,1)} f(\theta) ?

[Hint: The mean of a Beta (a,b)(a, b) distribution is a/(a+b)a /(a+b) and its density p(u)p(u) at u[0,1]u \in[0,1] is ca,bua1(1u)b1c_{a, b} u^{a-1}(1-u)^{b-1}, where ca,bc_{a, b} is a normalising constant.]