Paper 3, Section II, G
Let be a curve (not necessarily closed) in and let denote the image of . Let be a continuous function and define
for . Show that has a power series expansion about every .
Using Cauchy's Integral Formula, show that a holomorphic function has complex derivatives of all orders. [Properties of power series may be assumed without proof.] Let be a holomorphic function on an open set that contains the closed disc . Obtain an integral formula for the derivative of on the open disc in terms of the values of on the boundary of the disc.
Show that if holomorphic functions on an open set converge locally uniformly to a holomorphic function on , then converges locally uniformly to .
Let and be two overlapping closed discs. Let be a holomorphic function on some open neighbourhood of . Show that there exist open neighbourhoods of and holomorphic functions on , such that on .