Paper 1, Section I, B

Complex Analysis or Complex Methods
Part IB, 2021

Let x>0,x2x>0, x \neq 2, and let CxC_{x} denote the positively oriented circle of radius xx centred at the origin. Define

g(x)=Cxz2+ezz2(z2)dzg(x)=\oint_{C_{x}} \frac{z^{2}+e^{z}}{z^{2}(z-2)} d z

Evaluate g(x)g(x) for x(0,)\{2}x \in(0, \infty) \backslash\{2\}.