B4.11

Probability and Measure
Part II, 2001

State the first and second Borel-Cantelli Lemmas and the Kolmogorov 0-1 law.

Let (Xn)n1\left(X_{n}\right)_{n \geqslant 1} be a sequence of independent random variables with distribution given

by

P(Xn=n)=1n=1P(Xn=0)\mathbb{P}\left(X_{n}=n\right)=\frac{1}{n}=1-\mathbb{P}\left(X_{n}=0\right)

and set Sn=i=1nXiS_{n}=\sum_{i=1}^{n} X_{i}.

(a) Show that there exist constants 0c1c20 \leqslant c_{1} \leqslant c_{2} \leqslant \infty such that liminfn(Sn/n)=c1\lim \inf _{n}\left(S_{n} / n\right)=c_{1}, almost surely and limsupn(Sn/n)=c2\lim \sup _{n}\left(S_{n} / n\right)=c_{2} almost surely.

(b) Let Yk=i=k+12kXiY_{k}=\sum_{i=k+1}^{2 k} X_{i} and Y~k=i=1kZi(k)\tilde{Y}_{k}=\sum_{i=1}^{k} Z_{i}^{(k)}, where (Zi(k))i=1k\left(Z_{i}^{(k)}\right)_{i=1}^{k} are independent with

P(Zi(k)=k)=12k=1P(Zi(k)=0),1ik,\mathbb{P}\left(Z_{i}^{(k)}=k\right)=\frac{1}{2 k}=1-\mathbb{P}\left(Z_{i}^{(k)}=0\right), \quad 1 \leqslant i \leqslant k,

and suppose that αZ+\alpha \in \mathbb{Z}^{+}.

Use the fact that P(Ykαk)P(Y~kαk)\mathbb{P}\left(Y_{k} \geqslant \alpha k\right) \geqslant \mathbb{P}\left(\tilde{Y}_{k} \geqslant \alpha k\right) to show that there exists pα>0p_{\alpha}>0 such that P(Ykαk)pα\mathbb{P}\left(Y_{k} \geqslant \alpha k\right) \geqslant p_{\alpha} for all sufficiently large kk.

[You may use the Poisson approximation to the binomial distribution without proof.]

By considering a suitable subsequence of (Yk)\left(Y_{k}\right), or otherwise, show that c2=c_{2}=\infty.

(c) Show that c11c_{1} \leqslant 1. Consider an appropriately chosen sequence of random times TiT_{i}, with 2TiTi+12 T_{i} \leqslant T_{i+1}, for which (STi/Ti)3c1/2\left(S_{T_{i}} / T_{i}\right) \leqslant 3 c_{1} / 2. Using the fact that the random variables (YTi)\left(Y_{T_{i}}\right) are independent, and by considering the events {YTi=0}\left\{Y_{T_{i}}=0\right\}, or otherwise, show that c1=0c_{1}=0.