B3.22

Statistical Physics
Part II, 2001

A system consists of NN weakly interacting non-relativistic fermions, each of mass mm, in a three-dimensional volume, VV. Derive the Fermi-Dirac distribution

n(ϵ)=KVgϵ1/2exp((ϵμ)/kT)+1n(\epsilon)=K V g \frac{\epsilon^{1 / 2}}{\exp ((\epsilon-\mu) / k T)+1}

where n(ϵ)dϵn(\epsilon) d \epsilon is the number of particles with energy in (ϵ,ϵ+dϵ)(\epsilon, \epsilon+d \epsilon) and K=2π(2m)3/2/h3K=2 \pi(2 m)^{3 / 2} / h^{3}. Explain the physical significance of gg.

Explain how the constant μ\mu is determined by the number of particles NN and write down expressions for NN and the internal energy EE in terms of n(ϵ)n(\epsilon).

Show that, in the limit κeμ/kT1\kappa \equiv e^{-\mu / k T} \gg 1,

N=VAκ(1122κ+O(1κ2))N=\frac{V}{A \kappa}\left(1-\frac{1}{2 \sqrt{2} \kappa}+O\left(\frac{1}{\kappa^{2}}\right)\right)

where A=h3/g(2πmkT)3/2A=h^{3} / g(2 \pi m k T)^{3 / 2}.

Show also that in this limit

E=32NkT(1+142κ+O(1κ2))E=\frac{3}{2} N k T\left(1+\frac{1}{4 \sqrt{2} \kappa}+O\left(\frac{1}{\kappa^{2}}\right)\right) \text {. }

Deduce that the condition κ1\kappa \gg 1 implies that AN/V1A N / V \ll 1. Discuss briefly whether or not this latter condition is satisfied in a white dwarf star and in a dilute electron gas at room temperature.

[\left[\right. Note that 0dueu2a=12πa]\left.\int_{0}^{\infty} d u e^{-u^{2} a}=\frac{1}{2} \sqrt{\frac{\pi}{a}}\right].