A2.16

Theoretical Geophysics
Part II, 2001

(i) In a reference frame rotating with constant angular velocity Ω\boldsymbol{\Omega} the equations of motion for an inviscid, incompressible fluid of density ρ\rho in a gravitational field g=Φg=-\nabla \Phi are

ρDuDt+2ρΩu=p+ρg,u=0\rho \frac{D \mathbf{u}}{D t}+2 \rho \boldsymbol{\Omega} \wedge \mathbf{u}=-\nabla p+\rho \mathbf{g}, \quad \nabla \cdot \mathbf{u}=0

Define the Rossby number and explain what is meant by geostrophic flow.

Derive the vorticity equation

DωDt=(ω+2Ω)u+ρpρ2\frac{D \boldsymbol{\omega}}{D t}=(\boldsymbol{\omega}+2 \boldsymbol{\Omega}) \cdot \nabla \mathbf{u}+\frac{\nabla \rho \wedge \nabla p}{\rho^{2}}

[\left[\right. Recall that uu=(12u2)u(u)\mathbf{u} \cdot \nabla \mathbf{u}=\nabla\left(\frac{1}{2} \mathbf{u}^{2}\right)-\mathbf{u} \wedge(\nabla \wedge \mathbf{u}).]

Give a physical interpretation for the term (ω+2Ω)u(\boldsymbol{\omega}+2 \boldsymbol{\Omega}) \cdot \nabla \mathbf{u}.

(ii) Consider the rotating fluid of part (i), but now let ρ\rho be constant and absorb the effects of gravity into a modified pressure P=pρgxP=p-\rho \mathbf{g} \cdot \mathbf{x}. State the linearized equations of motion and the linearized vorticity equation for small-amplitude motions (inertial waves).

Use the linearized equations of motion to show that

2P=2ρΩω.\nabla^{2} P=2 \rho \boldsymbol{\Omega} \cdot \boldsymbol{\omega} .

Calculate the time derivative of the curl of the linearized vorticity equation. Hence show that

2t2(2u)=(2Ω)2u\frac{\partial^{2}}{\partial t^{2}}\left(\nabla^{2} \mathbf{u}\right)=-(2 \mathbf{\Omega} \cdot \nabla)^{2} \mathbf{u}

Deduce the dispersion relation for waves proportional to exp[i(kxnt)]\exp [i(\mathbf{k} \cdot \mathbf{x}-n t)]. Show that n2Ω|n| \leq 2 \Omega. Show further that if n=2Ωn=2 \Omega then P=0P=0.