A3.17
Part II, 2001
(i) The function satisfies the differential equation
where and are constants, with boundary conditions . By integrating this equation or otherwise, show that must also satisfy the integral equation
and find the functions and .
(ii) Solve the integral equation
by finding an ordinary differential equation satisfied by together with boundary conditions.
Now solve the integral equation by the method of successive approximations and show that the solutions are the same.