A3.18

Nonlinear Waves
Part II, 2001

(i) The so-called breather solution of the sine-Gordon equation is

ϕ(x,t)=4tan1((1λ2)12λsinλtcosh(1λ2)12x),0<λ<1\phi(x, t)=4 \tan ^{-1}\left(\frac{\left(1-\lambda^{2}\right)^{\frac{1}{2}}}{\lambda} \frac{\sin \lambda t}{\cosh \left(1-\lambda^{2}\right)^{\frac{1}{2}} x}\right), \quad 0<\lambda<1

Describe qualitatively the behaviour of ϕ(x,t)\phi(x, t), for λ1\lambda \ll 1, when xln(2/λ)|x| \gg \ln (2 / \lambda), when x1|x| \ll 1, and when coshx1λsinλt\cosh x \approx \frac{1}{\lambda}|\sin \lambda t|. Explain how this solution can be interpreted in terms of motion of a kink and an antikink. Estimate the greatest separation of the kink and antikink.

(ii) The field ψ(x,t)\psi(x, t) obeys the nonlinear wave equation

2ψt22ψx2+dUdψ=0\frac{\partial^{2} \psi}{\partial t^{2}}-\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{d U}{d \psi}=0

where the potential UU has the form

U(ψ)=12(ψψ3)2.U(\psi)=\frac{1}{2}\left(\psi-\psi^{3}\right)^{2} .

Show that ψ=0\psi=0 and ψ=1\psi=1 are stable constant solutions.

Find a steady wave solution ψ=f(xvt)\psi=f(x-v t) satisfying the boundary conditions ψ0\psi \rightarrow 0 as x,ψ1x \rightarrow-\infty, \psi \rightarrow 1 as xx \rightarrow \infty. What constraint is there on the velocity v?v ?