A2.8
Part II, 2001
(i) Prove that any graph drawn on a compact surface with negative Euler characteristic has a vertex colouring that uses at most
colours.
Briefly discuss whether the result is still true when .
(ii) Prove that a graph is edge-connected if and only if the removal of no set of less than edges from disconnects .
[If you use any form of Menger's theorem, you must prove it.]
Let be a minimal example of a graph that requires colours for a vertex colouring. Show that must be edge-connected.