A2.2 B2.1
Part II, 2001
(i) An axially symmetric top rotates freely about a fixed point on its axis. The principal moments of inertia are and the centre of gravity is a distance from
Define the three Euler angles and , specifying the orientation of the top. Use Lagrange's equations to show that there are three conserved quantities in the motion. Interpret them physically.
(ii) Initially the top is spinning with angular speed about , with vertical, before it is slightly disturbed.
Show that, in the subsequent motion, stays close to zero if , but if this condition fails then attains a maximum value given approximately by
Why is this only an approximation?