A4.2

Principles of Dynamics
Part II, 2001

(i) Consider a particle of charge qq and mass mm, moving in a stationary magnetic field B. Show that Lagrange's equations applied to the Lagrangian

L=12mr˙2+qr˙A(r)L=\frac{1}{2} m \dot{\mathbf{r}}^{2}+q \dot{\mathbf{r}} \cdot \mathbf{A}(\mathbf{r})

where A\mathbf{A} is the vector potential such that B=curlA\mathbf{B}=\operatorname{curl} \mathbf{A}, lead to the correct Lorentz force law. Compute the canonical momentum p\mathbf{p}, and show that the Hamiltonian is H=12mr˙2H=\frac{1}{2} m \dot{\mathbf{r}}^{2}.

(ii) Expressing the velocity components r˙i\dot{r}_{i} in terms of the canonical momenta and co-ordinates for the above system, derive the following formulae for Poisson brackets: (b) {mr˙i,mr˙j}=qϵijkBk\left\{m \dot{r}_{i}, m \dot{r}_{j}\right\}=q \epsilon_{i j k} B_{k}; (c) {mr˙i,rj}=δij\left\{m \dot{r}_{i}, r_{j}\right\}=-\delta_{i j}; (d) {mr˙i,f(rj)}=rif(rj)\left\{m \dot{r}_{i}, f\left(r_{j}\right)\right\}=-\frac{\partial}{\partial r_{i}} f\left(r_{j}\right).

(a) {FG,H}=F{G,H}+{F,H}G\{F G, H\}=F\{G, H\}+\{F, H\} G, for any functions F,G,HF, G, H;

Now consider a particle moving in the field of a magnetic monopole,

Bi=grir3.B_{i}=g \frac{r_{i}}{r^{3}} .

Show that {H,J}=0\{H, \mathbf{J}\}=0, where J=mrr˙gqr^\mathbf{J}=m \mathbf{r} \wedge \dot{\mathbf{r}}-g q \hat{\mathbf{r}}. Explain why this means that J\mathbf{J} is conserved.

Show that, if g=0g=0, conservation of J\mathbf{J} implies that the particle moves in a plane perpendicular to J\mathbf{J}. What type of surface does the particle move on if g0g \neq 0 ?