A1 .3. 3 \quad

Functional Analysis
Part II, 2001

(i) Define the adjoint of a bounded, linear map u:HHu: H \rightarrow H on the Hilbert space HH. Find the adjoint of the map

u:HH;xϕ(x)au: H \rightarrow H ; \quad x \mapsto \phi(x) a

where a,bHa, b \in H and ϕH\phi \in H^{*} is the linear map xb,xx \mapsto\langle b, x\rangle.

Now let JJ be an incomplete inner product space and u:JJu: J \rightarrow J a bounded, linear map. Is it always true that there is an adjoint u:JJu^{*}: J \rightarrow J ?

(ii) Let H\mathcal{H} be the space of analytic functions f:DCf: \mathbb{D} \rightarrow \mathbb{C} on the unit disc D\mathbb{D} for which

Df(z)2dxdy<(z=x+iy)\iint_{\mathbb{D}}|f(z)|^{2} d x d y<\infty \quad(z=x+i y)

You may assume that this is a Hilbert space for the inner product:

f,g=Df(z)g(z)dxdy.\langle f, g\rangle=\iint_{\mathbb{D}} \overline{f(z)} g(z) d x d y .

Show that the functions uk:zαkzk(k=0,1,2,)u_{k}: z \mapsto \alpha_{k} z^{k}(k=0,1,2, \ldots) form an orthonormal sequence in H\mathcal{H} when the constants αk\alpha_{k} are chosen appropriately.

Prove carefully that every function fHf \in \mathcal{H} can be written as the sum of a convergent series k=0fkuk\sum_{k=0}^{\infty} f_{k} u_{k} in H\mathcal{H} with fkCf_{k} \in \mathbb{C}.

For each smooth curve γ\gamma in the disc D\mathbb{D} starting from 0 , prove that

ϕ:HC;fγf(z)dz\phi: \mathcal{H} \rightarrow \mathbb{C} ; \quad f \mapsto \int_{\gamma} f(z) d z

is a continuous, linear map. Show that the norm of ϕ\phi satisfies

ϕ2=1πlog(11w2)\|\phi\|^{2}=\frac{1}{\pi} \log \left(\frac{1}{1-|w|^{2}}\right)

where ww is the endpoint of γ\gamma.