A3.4

Groups, Rings and Fields
Part II, 2001

(i) Let GG be the cyclic subgroup of GL2(C)G L_{2}(\mathbf{C}) generated by the matrix (1201)\left(\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right), acting on the polynomial ring C[X,Y]\mathbf{C}[X, Y]. Determine the ring of invariants C[X,Y]G\mathbf{C}[X, Y]^{G}.

(ii) Determine C[X,Y]G\mathbf{C}[X, Y]^{G} when GG is the cyclic group generated by (0111)\left(\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right).

[Hint: consider the eigenvectors.]