A4.4

Groups, Rings and Fields
Part II, 2001

Show that the ring Z[ω]\mathbf{Z}[\omega] is Euclidean, where ω=exp(2πi/3)\omega=\exp (2 \pi i / 3).

Show that a prime number p3p \neq 3 is reducible in Z[ω]\mathbf{Z}[\omega] if and only if p1(mod3)p \equiv 1(\bmod 3).

Which prime numbers pp can be written in the form p=a2+ab+b2p=a^{2}+a b+b^{2} with a,bZa, b \in \mathbf{Z} (and why)?