A 1.51 . 5 \quad B 1.41 . 4 \quad

Electromagnetism
Part II, 2001

(i) Write down the two Maxwell equations that govern steady magnetic fields. Show that the boundary conditions satisfied by the magnetic field on either side of a current sheet, J\mathbf{J}, with unit normal to the sheet n\mathbf{n}, are

nB2nB1=μ0J\mathbf{n} \wedge \mathbf{B}_{2}-\mathbf{n} \wedge \mathbf{B}_{1}=\mu_{0} \mathbf{J}

State without proof the force per unit area on J\mathbf{J}.

(ii) Conducting gas occupies the infinite slab 0xa0 \leqslant x \leqslant a. It carries a steady current j=(0,0,j)\mathbf{j}=(0,0, j) and a magnetic field B=(0,B,0)\mathbf{B}=(0, B, 0) where j\mathbf{j}, B\mathbf{B} depend only on xx. The pressure is p(x)p(x). The equation of hydrostatic equilibrium is p=jB\nabla p=\mathbf{j} \wedge \mathbf{B}. Write down the equations to be solved in this case. Show that p+(1/2μ0)B2p+\left(1 / 2 \mu_{0}\right) B^{2} is independent of xx. Using the suffixes 1,2 to denote values at x=0,ax=0, a, respectively, verify that your results are in agreement with those of Part (i) in the case of a0a \rightarrow 0.

Suppose that

j(x)=πj02asin(πxa),B1=0,p2=0j(x)=\frac{\pi j_{0}}{2 a} \sin \left(\frac{\pi x}{a}\right), \quad B_{1}=0, \quad p_{2}=0

Find B(x)B(x) everywhere in the slab.