B2.11

Logic, Computation and Set Theory
Part II, 2001

Let UU be an arbitrary set, and P(U)\mathcal{P}(U) the power set of UU. For XX a subset of P(U)\mathcal{P}(U), the dual XX^{\vee} of XX is the set {yU:(xX)(yx)}\{y \subseteq U:(\forall x \in X)(y \cap x \neq \emptyset)\}.

(i) Show that XYYXX \subseteq Y \rightarrow Y^{\vee} \subseteq X^{\vee}.

Show that for {Xi:iI}\left\{X_{i}: i \in I\right\} a family of subsets of P(U)\mathcal{P}(U)

({Xi:iI})={Xi:iI}\left(\bigcup\left\{X_{i}: i \in I\right\}\right)^{\vee}=\bigcap\left\{X_{i}^{\vee}: i \in I\right\}

(ii) Consider S={XP(U):XX}S=\left\{X \subseteq \mathcal{P}(U): X \subseteq X^{\vee}\right\}. Show that SS, \subseteq is a chain-complete poset.

State Zorn's lemma and use it to deduce that there exists XX with X=XX=X^{\vee}.

Show that if X=XX=X^{\vee} then the following hold:

XX is closed under superset; for all UU,XU^{\prime} \subseteq U, X contains either UU^{\prime} or U\UU \backslash U^{\prime}.