A2.11 B2.16

Principles of Statistics
Part II, 2001

(i) Let X1,,XnX_{1}, \ldots, X_{n} be independent, identically-distributed N(μ,μ2)N\left(\mu, \mu^{2}\right) random variables, μ>0\mu>0.

Find a minimal sufficient statistic for μ\mu.

Let T1=n1i=1nXiT_{1}=n^{-1} \sum_{i=1}^{n} X_{i} and T2=n1i=1nXi2T_{2}=\sqrt{n^{-1} \sum_{i=1}^{n} X_{i}^{2}}. Write down the distribution of Xi/μX_{i} / \mu, and hence show that Z=T1/T2Z=T_{1} / T_{2} is ancillary. Explain briefly why the Conditionality Principle would lead to inference about μ\mu being drawn from the conditional distribution of T2T_{2} given ZZ.

What is the maximum likelihood estimator of μ\mu ?

(ii) Describe briefly the Bayesian approach to predictive inference,

Let Z1,,ZnZ_{1}, \ldots, Z_{n} be independent, identically-distributed N(μ,σ2)N\left(\mu, \sigma^{2}\right) random variables, with μ,σ2\mu, \sigma^{2} both unknown. Derive the maximum likelihood estimators μ^,σ^2\widehat{\mu}, \widehat{\sigma}^{2} of μ,σ2\mu, \sigma^{2} based on Z1,,ZnZ_{1}, \ldots, Z_{n}, and state, without proof, their joint distribution.

Suppose that it is required to construct a prediction interval

I1αI1α(Z1,,Zn)I_{1-\alpha} \equiv I_{1-\alpha}\left(Z_{1}, \ldots, Z_{n}\right) for a future, independent, random variable Z0Z_{0} with the same N(μ,σ2)N\left(\mu, \sigma^{2}\right) distribution, such that

P(Z0I1α)=1αP\left(Z_{0} \in I_{1-\alpha}\right)=1-\alpha

with the probability over the joint distribution of Z0,Z1,,ZnZ_{0}, Z_{1}, \ldots, Z_{n}. Let

I1α(Z1,,Zn;σ2)=[Zˉnzα/2σ1+1/n,Zˉn+zα/2σ1+1/n]I_{1-\alpha}\left(Z_{1}, \ldots, Z_{n} ; \sigma^{2}\right)=\left[\bar{Z}_{n}-z_{\alpha / 2} \sigma \sqrt{1+1 / n}, \bar{Z}_{n}+z_{\alpha / 2} \sigma \sqrt{1+1 / n}\right]

where Zˉn=n1i=1nZi\bar{Z}_{n}=n^{-1} \sum_{i=1}^{n} Z_{i}, and Φ(zβ)=1β\Phi\left(z_{\beta}\right)=1-\beta, with Φ\Phi the distribution function of N(0,1)N(0,1).

Show that P(Z0I1α(Z1,,Zn;σ2))=1αP\left(Z_{0} \in I_{1-\alpha}\left(Z_{1}, \ldots, Z_{n} ; \sigma^{2}\right)\right)=1-\alpha.

By considering the distribution of (Z0Zˉn)/(σ^n+1n1)\left(Z_{0}-\bar{Z}_{n}\right) /\left(\widehat{\sigma} \sqrt{\frac{n+1}{n-1}}\right), or otherwise, show that

P(Z0I1α(Z1,,Zn;σ^2))<1α,P\left(Z_{0} \in I_{1-\alpha}\left(Z_{1}, \ldots, Z_{n} ; \widehat{\sigma}^{2}\right)\right)<1-\alpha,

and show how to construct an interval I1γ(Z1,,Zn;σ^2)I_{1-\gamma}\left(Z_{1}, \ldots, Z_{n} ; \widehat{\sigma}^{2}\right) with

P(Z0I1γ(Z1,,Zn;σ^2))=1α.P\left(Z_{0} \in I_{1-\gamma}\left(Z_{1}, \ldots, Z_{n} ; \widehat{\sigma}^{2}\right)\right)=1-\alpha .

[Hint: if YY has the tt-distribution with mm degrees of freedom and tβ(m)t_{\beta}^{(m)} is defined by P(Y<tβ(m))=1βP\left(Y<t_{\beta}^{(m)}\right)=1-\beta then tβ>zβt_{\beta}>z_{\beta} for β<12\beta<\frac{1}{2}.]