A1.11 B1.16
(i) The price of the stock in the binomial model at time , is , where are independent, identically-distributed random variables with and the initial price is a constant. Denote the fixed interest rate on the bank account by , where , and let the discount factor . Determine the unique value for which the sequence is a martingale.
Explain briefly the significance of for the pricing of contingent claims in the model.
(ii) Let denote the first time that a standard Brownian motion reaches the level . Prove that for ,
where is the standard normal distribution function.
Suppose that and represent the prices at time of two different stocks with initial prices 1 and 2 , respectively; the prices evolve so that they may be represented as and , respectively, where and are independent standard Brownian motions and and are constants. Let denote the first time, if ever, that the prices of the two stocks are the same. Determine , for .